隧道防腐抗渗支护混凝土的试验研究
2.2 设计问题
钢筋砼结构是由砼和钢筋共同承担极限状态的承载力,结构设计师根据地基情况,静、动荷载、环境因素、结构耐久性等控制荷载裂缝。这里不作讨论。从国内外有关规范可知,对结构变形作用引起的裂缝问题,客观上存在两类学派:你好第一类,设计规范规定很灵活,没有验算裂缝的明确规定,设计方法留给设计人员自由处理。基本上采取“裂了就堵、堵不住就排”的实际处理手法。
第二类,设计规范有明确规定,对于荷载裂缝有计算公式并有严格的允许宽度限制。对于变形裂缝没有计算规定,只按规范留伸缩缝,即留缝就不裂的设计原则。
大量工程实践证明,留缝与否,并不是决定结构变形开裂与否的唯一条件,留缝不一定不裂,不留缝不一定裂,是否开裂与许多因素有关。我们认为,控制裂缝应该防患于未然,首先尽量预防有害裂缝,重点在防。我国结构工程向长大化、复杂化发展,砼设计强度等级向C40~C60发展,设计师多注重结构安全,而对变形裂缝控制考虑不周,这也是结构裂缝发生增多的原因之一。
2.3 施工管理问题
砼配合比设计是否科学合理,水泥与外加剂是否相适应,砂石级配及其含泥量是否符合规范要求,砼坍落度控制是否合理,这些都影响到砼的质量及其收缩变形。砼浇筑震捣不均匀密实,施工缝和细部处理马虎,会带来结构开裂的后患;过震则使浮浆过厚,抹压又不及时,则砼表面出现塑性裂缝,十分难看。边墙拆摸板过早(1~3d),砼水化热正处于高峰,内外温差最大;砼易“感冒”开裂。
砼养护十分重要,但许多施工单位忽视这一环节,尤其是墙体和柱梁的保温保湿养护不到位,容易产生收缩裂缝。某些露天构筑物尽管当地湿度很大,但由于吹风影响,加速了砼水分蒸发速度,亦即增加干缩速度,容易引起早期表面裂缝。这也许是夏季比秋冬季,南方比北方出现结构裂缝较多的原因。从已建工程调查中发现,底板养护较好,出现裂缝概率较低,而底板上外墙裂缝概率很高约占80%,这与保温保湿养护不足有很大关系。
除上述技术因素外,施工管理不严,赶进度,偷工减料,工人素质差,施工马虎等也是造成结构裂缝的人为因素。
2.4 对维护缺乏认识
我们发现不少结构是在浇筑完3~6 月,甚至在1~2年内出现裂缝。除荷载问题外,主要是环境温度和风速引起的收缩变形所致。有些地下室不及时复土;上部结构不及时做好封闭;出入口长期敞开,屋面防水层破坏不及时修补等。这些与施工和业主对结构维护缺乏认识有关。钢筋砼结构与其他物件一样都存在“热胀冷缩”的特征,尤其超长结构更为明显,所以,应重视已浇结构的保温保湿维护工作。
3. 水泥混凝土防腐抗渗的基本原理
3.1 水泥混凝土的特性
水泥混凝土既没有钢材那样坚强,也没有钢材那样刚韧,为什么它是应用最广泛的工程材料呢?这有很多原因。首先,混凝土具有十分良好的抗水性。不象木材和普通钢材那样,混凝土能经受水的作用而不产生严重的变质,使它成为建造控制、贮蓄和运输水的结构物的理想材料。在水坝、渠道、水管和蓄水池工程中采用混凝土,在全世界几乎是到处可见。混凝土对一些具有侵蚀性水的耐受性,使得它的用途推广到许多有害工业和自然环境中去。暴露于潮湿环境中的结构构件:如桩、基础、地板、梁、柱、屋顶、外墙和路面,经常都用混凝土或钢筋混凝土来制造。钢筋混凝土在设计时,假定钢筋和混凝土这两种材料能共同承受力的作用。予应力混凝土是张拉混凝土中的钢筋或钢丝束,引入一定大小或—定分布的予应力,在一定的程度上抵消了由施加的荷载所产生的拉应力。可以肯定,极大数量的混凝土是用于制造钢筋混凝土或者预应力混凝土构件的。
混凝土得到广泛应用的第二个原因是,混凝土容易制得各式各样大小不同的结构构件。这是因为新拌混凝土具有良好的塑性和稠度,可方便地填筑于预先制作好的模板中。几小时之后,当混凝土已凝结硬化时,模板可移去留待重复使用。
工程师们对混凝土十分钟爱的第三个原因,是因为它总是工程上最易得到,并且是最便宜的材料。制造混凝土的主要成分——波特兰水泥和骨料——都相对地便宜,并在世界大多数地方较易获得。与大多数其它工程材料相比,生产混凝土所需的能耗要小得多,而且大量的工业废料可作为混凝土中胶凝材料或骨料的代用品。所以在将来,考虑到能源和资源保护,混凝土作为结构材料具有其不可替代的独特优势。
选用一种材料时,职业上的判断不仅要考虑材料的强度、尺寸稳定性和弹性性质,而且要考虑材料的耐久性。因为耐久性对结构的
材料领域内的进展,主要在于认识了材料的各种性能是由其内部结构而决定的;换句话说,材料性能可以通过适当地改变材料的结构或构成而予以改性。虽然混凝土是应用最广泛的结构材料,但其内部结构是不均匀的,而且高度复杂。混凝土的结构与性能的关系至今尚未很好阐明。混凝土不同于其它工程材科,其结构并不保持稳定(即其结构不是材料固有的特征)。这是因为,结构的两个组分,即硬化水泥浆体和过渡区,随时间、环境湿度和温度的变化而变化。
理论上结构——性能的关系模型,一般对预测工程材料行为有较大帮助,而对混凝土则几乎毫无用处,其主要理由在于混凝土结构的高度不均匀性和其动力学特性。有关混凝土各组分结构的重要特征方面的知识,对了解和控制复合材科的性质仍然是基本的。
骨料相最主要是对混凝土容重、弹性模量、尺寸稳定性起作用。这些混凝土性质在很大程度上取决于骨料的容重和强度,同时也取决于骨料结构的物理特性,而不是化学特性。换句话说,骨料相中的化学或矿物组成通常较之物理特性诸如体积、尺寸和孔分布等的重要性要小。
除孔隙率外,粗骨科的形状和结构同样也影响混凝土的性质。通常,天然砾石呈圆形,具有光滑的表面结构。破碎的岩石表面具有粗糙结构;粗糙度取决于岩石类型及所选择的破碎设备。破碎的骨料可以含有相当数量的扁平和长条颗粒,这类颗粒对混凝土许多性质起不良影响。呈高度蜂窝状的浮石轻骨料同样呈多角形和粗糙结构,但陶粒或页岩轻骨料通常呈圆形和光滑结构。
混凝土材料的非匀质及非等向性的程度,取决于原材料的均匀性、水泥骨料比和水灰比,以及搅拌、浇注、震捣和养护等施工操作工艺。此外,在硬化早期应力作用下,混凝土内部形成的微裂缝具有一定的方向性,对硬化后期的不同应力状态、微裂缝的发展和变形将有不同的反应,这是混凝土的受力后非等向性。
3.2 复杂的微观内应力(变形)状态
如果将一块混凝土按比例放大,就可看作由粗骨料和硬化的水泥砂浆这两种性质迥异的主要材料构成的非线性、三维实体结构物。在承受荷载之前和之后,都存在十分复杂的微观应力(应变)场。这正是混凝土材性变化大和性能指标离散的主要原因。
在混凝土的凝固过程中,水泥的水化作用产生凝胶体,使水泥砂浆逐渐变稠、硬化,和粗骨料粘结成一整体。在此同时,混凝土因水分逐渐逸出而变干燥,水泥砂浆发生的收缩量远大于粗骨料的收缩量。此收缩差使粗骨料受压, 而砂浆受拉。 虽然任一截面上的应力合力为零,但局部的收缩应力值可能很大,以致在粗骨料界面上形成微裂缝。
同样,由于粗骨科和硬化水泥浆间的线膨胀系数的差别,即使两者的温度变化相同,也因为变形的不一致、又相互约束而产生不均匀的三维应力场。更何况混凝土是热情性材料(导热系数A=(0.81—1.86)w/m.K),因为水化热、环境温度变化或事故(火)升温等因素影响, 将使混凝土表层和内部形成较大的温度差,内部的微观温度应力(应变)场更为复杂、变化大。
当结构承受外力的作用,即使局部混凝土的宏观应力均匀,也会因为粗骨料的随机排列和水泥砂浆的不规则形状、两者的弹性(或变形)模量和抗拉、压强度的差别,以及粗骨料周边的接触状况的不同而存在着不均匀的微观应力场, 不仅主要截面,其它任何方向截面上的应力分布都不均匀。至于混凝土内存在的各种气孔和缝隙,其尖端附近的局部应力集中区,微观的应力变化大且应力值高,而进入塑性阶段(可参考断裂力学理论)。
所有这些都表明,从微观上分析混凝土必然是一个非常复杂的、不确定的。 三维应力(变形)状态,对于混凝土的开裂、裂缝发展、变形、极限强度和破坏形态等都有很大影响。
3.3 变形的多元组成
混凝土承受的应力作用或环境条件的变化都将发生相应的变形, 它们主要由三部分组成:
粗细骨料的弹性变形——占混凝土体积中绝大部分的砂石,本身的强度和弹性模量均高出混凝土的很多,在达到混凝土的最大应力(极限强度)时其变形一般仍在弹性范围以内,即变形与应力值成正比,卸载后变形可全部恢复,不留残余应变。