当前位置:518建筑网建筑技术施工论文再论建筑“空间句法” -- 正文

再论建筑“空间句法”

[12-01 19:55:10]   来源:http://www.jianzhu518.com  施工论文   阅读:9802

    交叠凸状分割与上面讨论的凸状分割的区别在于:(1)交叠凸状空间的每条边都一定与实体边界共线,而凸状分析只要求至少有一条边与实体边界共线;(2)凸状分析方法中,各凸状空间只可相邻,不允许交叠。所以,交叠凸状分割方法更强调实体的界定作用,而没有对各凸状空间之间的关系作出太多限制。这是其定义明确的关键所在。某变形网格平面及其凸状和交叠凸状空间分析比较。可以看出,二者的分析结果大致吻合,都显示出右部的广场及其相连的道路具有最高的集成度。

    该方法分析过程繁琐,手工操作很难保证准确无误,多由计算机自动完成,但是若实体边界过

www.jianzhu518.com 多、较为复杂或含有弧线,则运算量相当大,常出错,生成的交叠凸状也过于杂乱。

    3.2.2穷尽轴线——所有线分析

    此方法认为空间在其初始状态下,可概念化为无限密集的线的矩阵,它暗含各种结构的可能性。若在此空间中置入物体就意味着,原有的某些运动和可见的线被打断了(Hillier,1996,345~347)。这时,来注意那些与该物体尽可能接近,但又未受其影响的线,也就是仅在一个顶点上与该物体相切的线。之所以注意这些线,是因为它们处在,由于物体的介入而导致的被打断的线与未被打断的线的战略交界上。这样当有另一物体置入该空间时,找出另一物体的相切顶点,则两点确定一条直线,我们就能绘出数量一定的战略线。这些战略线的集合就是“所有线”。

    因此,“所有线”被定义为,与一个物体的一个顶点和另一物体的一个顶点都相切,直到碰到其他物体或空间的边界的线的集合,(另外,在具体分析时,原有空间边界的顶点亦常考虑在"所有线“连接的范围内,因为它标示了边界与物体的关系)。同样,根据这些"所有线”之间的交接关系,亦可将其转化为前述关系图解,并计算和分析各种空间句法变量。再用由红到蓝的线,代表集成度由高到低的变化。

    对上面提到的变形网格平面进行轴线和“所有线”分析的比较。可以看出,二者的分析结果大致相同。而且,每条轴线在所有线中都能找到。但是,在上图中,横贯东西的那条集成度最高的轴线所代表的空间,能明显看出,靠近广场的地方要比左端的集成度高,即存在从右向左的退晕现象。这是该轴线在左端被部分集成度较低的短线交叉覆盖的结果。这样看来,“所有线”分析不但通过其中的长线再现了整体结构,这相当于轴线图的作用;而且通过其中的短线,反映出局部结构(Hillier, 1996, 348)。因此,“所有线”分析与轴线分析相比,更加精确和细致。

    但是,“所有线”分析往往线条密而多,彼此交叉覆盖,不像轴线分析那样,可清晰辨别出直观地代表运动的几条主要直线。即“所有线”的冗余度太大,经济性不够(Peponis, 1998)。另外,其取样与交叠凸状空间分析类似,完全取决于所处理的多边形的复杂性,如果多边形的顶点过多,或存在曲线(软件将把曲线识别为由许多顶点构成),其计算将相当繁琐,甚至出错。这些都使“所有线”分析的实际应用受到了限制。

    3.2.3 穷尽视区——从视区集成到可见图解

    穷尽视区的方法通过在空间中整齐排布密集的点,来解决前述特征点取样的代表性和惟一性问题。其分析步骤是:首先在要分析的空间平面上以一定密度建立规则的点阵,然后求出每个点的视区,再根据这些视区之间的交接关系,算出每个点的句法变量。这种方法当时被称为“视区集成分析”(Turner, 1999)。

    如果从点之间的可见性关系来看,在视区集成分析中,视区相互交叠的两个观察点不一定能够彼此互视,即视区集成分析是把相互可见的点(即一次可见联系),以及视区交叠但互不可见的点(即二次可见联系),均算作直接的连接关系。后来,伦敦大学学院的研究人员仅把相互可见的点算做直接连接,即以一次可见联系来生成可见图解[14],然后对此图解进行集成度的计算,便可得到每个点的句法变量。

    点阵中任意相互可见的两点,可理解为构成了一个小的凸状空间,可见图解分析可看作根据这些凸状空间的交接关系来计算句法变量,所以这种方法亦可看作凸状方法的延伸。可见图解分析与前述各种分析方法的最大差异,就是要先建立规则的点阵。所以,这种方法是从所有点之间的可见性关系中,引出的空间拓扑结构计算。

    泰特美术馆的轴线、凸状和可见图解分析的比较,可看出可见图解的优点主要体现在:(1)对于复杂和开放的建筑平面,很难确定惟一的轴线和凸状画法,而可见图解分析则不会受到这种限制,只需在空间中均匀地排布点;(2)对于相同的平面,只要保持一定的点阵密度,可见图解分析的结果会比轴线、凸状分析更加细致,原来仅用一条轴线或一个凸状表示的空间,可见图解可详细揭示其内部的差异。可见图解分析的最大缺点是计算相当耗时,但随着计算机运算能力的不断增强,只要适当控制取样点的密度,可见图解分析完全可以胜任规模较大的建筑和城市空间分析。

    3.3 以实体的形定义的空间分割方法

    这类方法中,以表面分割(surface partition)和端点分割(endpoint partition)最为着名,它是在1995-1999年,由当时供职于佐治亚理工学院(GIT)的派普内斯(John Peponis)和瓦因曼(Jean Wineman)等学者发展的一套新的空间构形分析方法。

    他们认为,运动是可让我们把复杂空间结构中的不同视点相互联系,并通过直接体验与抽象推理的结合,找回空间描述的操作基础。而人们在运动中感知到的空间信息一般是不连续的,于是人们会根据这种不连续性而把空间系统自然地划分为视觉感知的基本单元。空间分割就是找出这些空间单元的交界之处。派普内斯认为空间信息的不连续是由空间边界的不连续造成的,如墙角、墙的转折点、自由墙体的尽端等。他用这些不连续点将实体边界区分为不同的边,然后,用“能否看到相同的边”来定义空间信息的基本单元,从而廓清建筑实体的形式与空间构形之间的关系。

  &nb

www.jianzhu518.com sp; 表面分割就是通过延伸优角(大于180° 的角)的两边来对空间进行分割,自由墙体的端点可看成360°的优角,所以也要延长,所得分割线是被延伸的“墙表面”可见与不可见的临界之处,所分割成的子空间称为s空间。端点分割就是除了绘出表面分割线之外,再绘出所有可延伸的优角连接线的延长线,其意义是所有“边”的可见与不可见的临界之处,即跨过这条线则原来可见的一条边就看不到了,或看到了一条原来看不到的边,这样分割成的子空间称为e空间。每个e空间都具有“获取信息稳定的”特点,即同一e空间中各点都只能看到相同的边,这就是空间体验的基本单元。

    经端点分割后形成的各单元,从局部获取的视觉信息是不相等的。蓝颜色e空间的视觉信息最少,只能看到4条边,而黄颜色e空间的视觉信息最多,可看到8条边。

    这些子空间的句法变量计算与传统的凸状算法略有不同。简单地根据e 空间之间的连接关系计算出的集成度,难以表达实际意义。派普内斯用可见性来定义空间的连接:如果两个e空间中的各点都能彼此互视,即若存在一个包容这两个 e空间,且不被实体打断的凸状空间,则认为这两个e空间有连接关系。用这种方法判断所有e空间两两之间的关系,继而生成关系图解,然后便可计算各种句法变量。某个e空间的深度值,其意义就是判断从该e空间出发,在视觉上需要多少步才能看遍整个空间系统。

    可以看出,这种表面和端点分割方法比交叠凸状的划分更细,凸状的交叠区域一定是某几个s 空间的并集。端点分割线与前述所有线也有相通之处,但其意义不同,所有线是为了分析视线或运动线的关系,而这种方法则是为了研究由这些分割线划分出的空间。两者在形式上也有差别。左边蓝线是绘出的一条“所有线”,它贯穿整个空间,止于边界;右边红线是在相同位置绘出的端点分割线,它只保留了下半段,因为这半段线才具有“边”的临界可见性质:即在这半段线左边,a和b两条边线皆可见,而在其右边则只能看到b,却看不到a.

    此外,以实体的形定义的构形分析方法还包括核心空间分析、边的视区集成和边界的可见图解分析等,暂不展开。

    3.4 小结和补充

    3.4.1 小结

    空间与实体是相互依存的矛盾统一体。要讨论空间构形就不能撇开对实体的研究。本章讨论的三类空间分割方法都是从可见性关系在空间与实体的相互制约之间,寻找恰当的平衡点和切入点。开头讨论的三种基本的空间分割方法,主要着眼于由实体界定的空间大致结构组成,虽然不能辨别实体边界的微小变动对空间的影响,但更符合人们头脑中简单、明确的空间构形;三种穷尽式的空间分割方法,更加强调由实体边界决定的空间分割的唯一性,也就是说这三种空间分割方法对实体形式的依赖性和敏感度都较强,但分析过程往往比较繁琐;而最后讨论的表面分割和端点分割方法,则更加直接地强调实体边界的转折点、角以及尽端等形式特征对空间构形的影响,定义明确,操作客观,但有时会纠缠于实体几何形式的琐碎干扰,而偏离对空间整体构形的专注。

    在实际分析中,往往根据不同的研究对象和目的选择合适的分析方法。例如,对于街巷布局或大范围城市路网的研究一般采用轴线方法;对于房间界定较为明确的建筑空间,常用凸状方法;对于自由开放的建筑平面多以可见图解来分析……有时,对同一平面还会用多种方法来分析,以充分发掘其潜在的多重构形。

上一页  [1] [2] [3] [4] [5]  下一页


标签: 空间  建筑   施工论文施工论文